NUMBER SEQUENCES

by

ROGER BANIS SORRELLS, B.S.

THESIS

Presented to the Faculty of the Graduate School of

The University of Texas in Partial Fulfillment

of the Requirements

For the Degree of

Master of Arts

The University of Texas

June, 1962
The author would like to thank Dr. Ralph E. Lane for supervising this thesis, and Dr. H. S. Wall for serving on his committee.

R. B. S.

The University of Texas
Austin, Texas
May 18, 1962
A B S T R A C T

Some preliminary theorems about numbers are proved, and some particular types of number sequences are shown to have sequential limits. It is then shown that if a sequence has a sequential limit, that sequence is convergent, and that if a sequence is convergent, it has a sequential limit; two necessary and sufficient conditions for absolute convergence of a number sequence are established.
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Certain Properties of Numbers</td>
<td>6</td>
</tr>
<tr>
<td>II. Some Particular Sequences Which Have Sequential Limits</td>
<td>9</td>
</tr>
<tr>
<td>III. Convergence and Sequential Limits</td>
<td>14</td>
</tr>
<tr>
<td>IV. Absolute Convergence</td>
<td>21</td>
</tr>
</tbody>
</table>
CERTAIN PROPERTIES OF NUMBERS

The following five theorems are intended to establish certain properties of real numbers which will be useful in proving the later theorems concerning sequences.

Theorem 1. If \(p \) is a positive number, then there is an integer \(q \) such that \(q > p \).

Proof: Suppose \(p \) is a number such that if \(q \) is an integer, then \(q < p \).

Let \(Q \) denote the set such that \(X \) belongs to \(Q \) if and only if \(X \) is an integer. \(Q \) has upper bound \(p \), so \(Q \) has a least upper bound \(u \).

If \(e > 0 \), \(u - e < u \) so there exists a positive integer \(n \) such that \(n > u - e \); in particular \(\frac{1}{2} > 0 \) so there exists an integer \(n \) such that \(n > u - \frac{1}{2} \); so \(n + \frac{1}{2} > u \).

But \(n + 1 \) is an integer, and \(n + 1 > n + \frac{1}{2} \), so \(n + 1 > u \), i.e., \(u \) is not an upper bound of \(Q \). Therefore, the supposition that \(Q \) has an upper bound \(p \) must be false.

Theorem 2. If \(p > 0 \), then there is a positive integer \(n \) such that \(1/n < p \).

Proof: Suppose there is a number \(p \) such that if \(n \) is a positive integer, \(1/n > p \). Then if \(n \) is a positive integer, \(1/p > n \); but ac-
According to Theorem 1, there is an integer \(m \) such that \(m > 1/p \). Therefore, the supposition that there is such a number as \(p \) must be false.

Theorem 3. Suppose that \(p \) is a non-negative real number such that \(q > 0 \), then \(p \leq q \). Then \(p = 0 \).

Proof: Either \(p = 0 \), or \(p > 0 \).

If \(p > 0 \), then \(p \) satisfies the requirement on \(q \) in the hypothesis of this theorem, so \(p < p \). This cannot be true, so \(p = 0 \).

Theorem 4. If \(p > 0 \) and \(n \) is a positive integer, then \((1 + p)^n \geq 1 + np\).

Proof:

\[
(1 + p)^1 = 1 + 1 \cdot p
\]

\[
(1 + p)^2 = 1 + 2p + p^2 \quad \text{and} \quad p^2 > 0,
\]

so

\[
(1 + p)^2 > 1 + 2p
\]

\[
(1 + p)^3 = (1 + p) (1 + p)^2 > (1 + p) (1 + 2p) = 1 + 3p + 2p^2
\]

so

\[
(1 + p)^3 > 1 + 3p
\]

and, continuing this process, for each positive integer \(n \) if

\[
(1 + p)^n \geq 1 + (n - 1)p, \quad (1 + p) > 0, \quad \text{so}
\]

\[
(1 + p)^n \geq (1 + p) [1 + (n - 1)p] = 1 + np + (n - 1)p^2
\]

and \((n - 1)p^2 \geq 0,\)

so

\[
(1 + p)^n \geq 1 + np
\]

Theorem 5. If \(0 < r < 1 \) and \(p > 0 \), then there is a positive number \(N \) such that \(0 < r^N < p \) if \(n \) is an integer greater than \(N \).

Proof: \(r < 1 \), so \(1 < 1/r \), i.e., there is a positive number \(k \) such that \(1/r = 1 + k \). Therefore, if \(n \) is a positive integer, \((1/r)^n = 1/r^n = (1 + k)^n\),
and, by Theorem 4, $(1 + k)^n \geq 1 + nk$.

$\frac{1}{kp} > 0$, so, by Theorem 1, there is a positive integer n such that $n > \frac{1}{kp}$. If $n > \frac{1}{kp}$, $nk > \frac{1}{p}$, so $1 + nk > 1 + \frac{1}{p}$. Therefore, $1/r^n > 1 + \frac{1}{p}$.

$1 + \frac{1}{p} > \frac{1}{p}$, so $1/r^n > \frac{1}{p}$, or $p > r^n$. Moreover, for each positive integer n, r^n is the product of n positive numbers, so $r^n > 0$. Therefore, if N denotes the number $\frac{1}{kp}$ and n is an integer greater than N, $0 < r^n < p$.
CHAPTER II

SOME PARTICULAR SEQUENCES WHICH HAVE SEQUENTIAL LIMITS

Definition 1. Suppose that S_1, S_2, S_3, \ldots is a number-sequence. The statement that S is the sequential limit of S_1, S_2, S_3, \ldots means that S is a number and that if $p>0$, then there is a positive number N such that $|S_n - S| < p$ if n is an integer greater than N.

Lemma 6a. If r is a number, and $r \neq 1$, and n is a positive integer, then

$$\frac{1}{1-r} = 1 + r + r^2 + \ldots + r^{n-1} + r^n \frac{1}{1-r}.$$

Proof:

$$\frac{1}{1-r} = (1-r + r^2 + \ldots + r^n \frac{1}{1-r})$$

$$= 1 + r \frac{1}{1-r}$$

$$= 1 + (r - r^2 + r^3) \frac{1}{1-r}$$

$$= 1 + r (r - r^2 + r^3) \frac{1}{1-r}$$

and, continuing this process, $r^{n-1} \frac{1}{1-r}$.

$$= \frac{r^{n-1} - r^n \frac{1}{1-r}}{1-r}$$

$$= \frac{r^{n-1}}{1-r} (1-r) + r^n \frac{1}{1-r}$$

$$= \frac{r^{n-1} + r^n \frac{1}{1-r}}{1}$$ for each positive integer n, so

$$\frac{1}{1-r} = 1 + r + r^2 + \ldots + r^{n-1} + r^n \frac{1}{1-r}.$$

Theorem 6. If $|r| < 1$ and $p>0$, then there is a positive number N such that $|1 + r + r^2 + \ldots + r^{n-1} - 1/\frac{1}{1-r}| < p$, if n is an integer greater than N.

Proof: By Lemma 6a, $1 + r + r^2 + \ldots + r^{n-1} + r^n \frac{1}{1-r} = \frac{1}{1-r}$.
so, \((1 + r + r^2 + \ldots + r^{n-1}) - 1/\left(1-r\right) = r^n/\left(1-r\right)\).

Therefore, \(\left|\left(1 + r + r^2 + \ldots + r^{n-1}\right) - 1/\left(1-r\right)\right| = |r^n/\left(1-r\right)|.

0 < |r| < 1 and \(\frac{1}{1-r} \geq p > 0\), so, by Theorem 5, there exists a positive number \(N\) such that \(0 < r^n < \left|1-r\right|p\) if \(n\) is an integer greater than \(N\).

\[
\left|\frac{r^n}{1-r}\right| = \frac{|r^n|}{|1-r|} = \frac{|r|^n}{1-r} \quad \text{so if } n \text{ is an integer greater than } N, \quad |r|^n < |1-r|p
\]

and \(\left|\frac{r^n}{1-r}\right| = \frac{|r^n|}{|1-r|} < |1-r|p = p\). Therefore, \(\left(1 + r + r^2 + \ldots + r^{n-1}\right) - 1/\left(1-r\right)\) is the sequential limit of the sequence \(1, 1 + r, 1 + r + r^2, 1 + r^2 + r^3, \ldots\).

Theorem 7. Suppose that \(S_1, S_2, S_3, \ldots\) is a non-increasing positive-number sequence (i.e., \(0 < S_{n+1} \leq S_n\) for each positive integer \(n\)). There is a non-negative real number \(S\) which is the sequential limit of \(S_1, S_2, S_3, \ldots\).

Proof: \(S_1, S_2, S_3, \ldots\) has lower bound zero, so there is a greatest number \(S\) which exceeds no element of \(S_1, S_2, S_3, \ldots\). If \(p > 0\), there exists a positive integer \(N\) such that \(S_N < S + p\); otherwise, \(S + p\) would be a lower bound of \(S_1, S_2, S_3, \ldots\), which exceeds \(S\), the greatest lower bound of \(S_1, S_2, S_3, \ldots\).

If \(n > N\), \(S_N \geq S > S\geq S_n\geq S > 0\). But \(p > S_N - S\) so \(p > S_n - S > 0\), and \(S_n - S < p\) for each integer \(n\) greater than \(N\). Therefore, \(S\) is a sequential limit of \(S_1, S_2, S_3, \ldots\).

Corollary 7a. Suppose that \(S_1, S_2, S_3, \ldots\) is a bounded non-decreasing number sequence (i.e., that there is a positive number \(B\) such that \(S_n \leq S_{n+1} \leq B\) for each positive integer \(n\)). There is a real number \(S\) which is the sequential limit of \(S_1, S_2, S_3, \ldots\).
Proof: Let B' denote $B + 1$. Then, $B' > B$, so if $S_n \leq S_{n+1} \leq B$, $S_n \leq S_{n+1} < B'$. For each positive integer n, $S_n \leq S_{n+1} < B'$, so $-S_n \geq -S_{n+1} > -B'$ and $B - S_n \geq B - S_{n+1} > 0$, so $B' - S_1, B' - S_2, B' - S_3, \ldots$ is a non-increasing positive number sequence. Therefore, by Theorem 7, there is a non-negative real number k which is the sequential limit of $B' - S_1, B' - S_2, B' - S_3, \ldots$.

If $p > 0$, there is a positive number N such that if n is an integer greater than $N, |B' - S_n - k| < p$. Let S denote $B - k$. Then $-k = S - B$ and $|B' - S_n - k| = |B' - S_n + S - B| = |S_n - S|$. Therefore, if $n > N, |S_n - S| < p$; that is, S is the sequential limit of S_1, S_2, S_3, \ldots.

Theorem 8. Suppose that S_1, S_2, S_3, \ldots is a non-increasing number sequence and that S_2, S_3, S_4, \ldots is a non-decreasing number sequence. If S_1, S_2, S_3, \ldots has a sequential limit S, then $S_{2n-1} \geq S \geq S_{2n}$ for each positive integer n. If $S_{2n-1} \geq S_{2n}$ for each positive integer n, then for S_1, S_2, S_3, \ldots to have a sequential limit, it is necessary and sufficient that the following statement be true: if $P > 0$, then there is a positive integer k such that $|S_k - S_{k+1}| < p$.

Proof: Suppose T is a number and, for some positive integer n, $T \geq S_{2n-1}$. $S_1, S_3, \ldots, S_{2n-1}, \ldots$ is a non-increasing number sequence so if k is an integer greater than n, $S_{2n-1} \geq S_{2k-1}$. If $p = T - S_{2n-1}$, $P > 0$, and if N is a positive number there is an integer k such that $k > 1/2 \left(N + 2n \right)$, (i.e., $2k - 1 > N + 2n - 1$). If k is such an integer, $2k - 1 > N$, but $|S_{2k-1} - T| > T - S_{2n-1}$. Therefore, for each positive number N there is an integer $2k - 1$ greater than N such that $|S_{2k-1} - T| > p$. So if S is a sequential limit of S_1, S_2, S_3, \ldots, it must be true that $S_{2n+1} \geq S$ for each positive integer N. A similar argument shows that if S is a sequential limit of S_1, S_2, S_3, \ldots, $S \geq S_{2n}$ for each positive integer n.

Suppose that \(S_1, S_2, S_3, \ldots \) has a sequential limit \(S \), and \(p > 0 \). If \(k > 0 \), so there is a positive number \(N \) such that if \(k \) is an integer greater than \(N \), \(|S_k - S| < p/2 \). If \(k > N \), \(k+1 > N \) so \(|S_{k+1} - S| < p/2 \). If \(k > N \), \(k+1 > N \) so \(|S_k - S_{k+1}| = |(S_k - S) - (S_{k+1} - S)| \leq |S_k - S| + |S_{k+1} - S| < p/2 + p/2 \), so \(|S_k - S_{k+1}| < p \) if \(k > N \).

Suppose if \(p > 0 \) there is a positive integer \(k \) such that \(|S_k - S_{k+1}| < p \) and \(S_{2n+1} \geq S_{2n} \) for each positive integer \(n \).

Suppose \(S_2, S_4, S_6, \ldots \) is a non-decreasing real number sequence, and for each \(n \), \(S_{2n+1} \geq S_{2n} \).

\(S_1 \geq S_{2n+1} \) since \(S_1, S_3, S_5, \ldots \) is non-increasing. Therefore, \(S_{2n} \leq S_{2n+2} \leq S_1 \) and so, by Corollary 7a, \(S_2, S_4, S_6, \ldots \) has a sequential limit \(S \).

There is a positive number \(N' \) such that \(|S_{2n} - S| < p/2 \), if \(n \) is an integer greater than \(N'/2 \). By hypothesis there is a positive integer \(k' \) such that \(|S_{k'} - S_{k'+1}| < p/2 \).

Suppose \(m \) is an integer greater than \(k' + N' \). If \(k' \) is odd and \(m \) is odd, \(S_k \geq S_m \) since \(S_1, S_3, S_5, \ldots \) is non-increasing and \(S_{k'+1} \leq S_{m+1} \) since \(S, S_2, S_4, S_6, \ldots \) is non-decreasing. From the hypothesis of the theorem we know that \(S_m \geq S_{m+1} \), so \(|S_m - S_{m+1}| = S_m - S_{m+1} \leq S_{k'} - S_{k'+1} = |S_{k'} - S_{k'+1}| \leq p/2 \). \(|S_m - S| \leq |S_m - S_{m+1}| + |S_{m+1} - S| \) and \(m+1 \) is an even integer greater than \(N' \), so \(|S_{m+1} - S| < p/2 \) and \(|S_m - S| < p/2 + p/2 \), or \(|S_m - S| < p \).
If k' is even and m is odd, $S_{k'} \geq S_{m+1}$ because S, S_3, S_5, \ldots is non-increasing, and $S_{k'+1} \leq S_m$ because S_2, S_4, S_6, \ldots is non-decreasing.

$S_m \geq S_{m+1}$, so $|S_m - S_{m+1}| = S_m - S_{m+1} \leq S_{k'+1} - S_{k'} = |S_{k'} - S_{k'+1}| \leq \frac{p}{2}$.

$|S_m - S| \leq |S_m - S_{m+1}| + |S_{m+1} - S|$ and $m+1$ is an even integer greater than n so $|S_{m+1} - S| \leq \frac{p}{2}$, and $|S_m - S| \leq \frac{p}{2} + \frac{p}{2}$, so $|S_m - S| \leq p$.

Therefore, if $p > 0$ and m is an integer greater than $N' + k'$, $|S_m - S| \leq p$, so S is a sequential limit of S_1, S_2, S_3, \ldots.
CHAPTER III

CONVERGENCE AND SEQUENTIAL LIMITS

Definition 2. Suppose that \(S_1, S_2, S_3, \ldots \) is a number sequence. The statement that \(S_1, S_2, S_3, \ldots \) converges means that if \(p \) is a positive number then there is a positive number \(N \) such that \(|S_m - S_n| < p \) if \(m \) and \(n \) are integers greater than \(N \).

Theorem 9. If the sequence \(S_1, S_2, S_3, \ldots \) has a sequential limit, then the sequence converges.

Proof: By hypothesis, \(S_1, S_2, S_3, \ldots \) has a sequential limit \(S \), i.e., if \(p > 0 \) there exists a positive number \(N \) such that \(|S_n - S| < p \) if \(n \) is an integer greater than \(N \).

If \(p > 0 \), \(p/2 > 0 \), so there exists a positive number \(N^* \) such that if \(n \) is an integer greater than \(N^* \), \(|S_n - S| < p/2 \). Suppose \(m \) and \(n \) are integers greater than \(N^* \). Then, \(|S_m - S_n| \leq |S_m - S| + |S_n - S| < p/2 \) and \(|S_n - S| < p/2 \), so \(|S_m - S_n| < p \), if \(m \) and \(n \) are integers greater than \(N^* \).

Definition 3. The statement that \(K \) is a disk with center \(c \) and radius \(r \) means that \(c \) is a number, \(r \) is a positive number, and \(K \) is a number set such that the number \(Z \) is in \(K \) if and only if \(|Z - c| \leq r \).

Theorem 10. Suppose that \(K_1 \) is the disc with center \(c_1 \) and radius \(r_1 \). For \(K_2 \) to be a subset of \(K_1 \) (that is to say, for each member of \(K_2 \) to be a member of \(K_1 \)), it is necessary and sufficient that \(|c_1 - c_2| \leq r_1 - r_2 \).
Proof: Suppose \(|c_1 - c_2| \leq r_1 - r_2\) and \(Z\) is in \(K_2\), i.e., \(|Z - c_2| \leq r_2\). Then \(|Z - c_1| = |Z - c_2 + c_2 - c_1|\), but \(|Z - c_2 + c_2 - c_1| \leq |Z - c_2| + |c_2 - c_1|\), so \(|Z - c_1| \leq r_2 + r_1 - r_2\), \(|Z - c_1| \leq r_1\), i.e., \(K_2\) is a subset of \(K_1\).

Suppose \(K_2\) is a subset of \(K_1\), i.e., if \(|Z - c_2| \leq r_2\), then \(|Z - c_1| \leq r_1\). Then \(|(c_2 + r_2 \frac{c_2 - c_1}{|c_2 - c_1|}) - c_2| = r_2\), so \(|(c_2 + r_2 \frac{c_2 - c_1}{|c_2 - c_1|}) - c_1| = |(c_2 - c_1) + (c_2 - c_1) \frac{r_2}{|c_2 - c_1|}| = |c_2 - c_1| \cdot |1 + \frac{r_2}{|c_2 - c_1|}| = \frac{|c_2 - c_1| \cdot |c_2 - c_1| + r_2}{|c_2 - c_1|} = |c_2 - c_1| + r_2\) \(\leq r_1\). Therefore, since \((|c_2 - c_1| + r_2) > 0\), \(|c_2 - c_1| + r_2\) = \(|c_2 - c_1| + r_2\), so \(|c_2 - c_1| + r_2 \leq r_1\), or, \(|c_2 - c_1| \leq r_1 - r_2\).

Definition 4. The statement that \(K_1, K_2, K_3, \ldots\) is a nest of discs means that if \(n\) is a positive integer, then \(K_n\) is a disc and \(K_{n+1}\) is a subset of \(K_n\).
Theorem 11. Suppose that K_1, K_2, K_3, \ldots is a nest of disks. There is a number c such that if n is a positive integer, c is in K_n.

Proof: For each positive n, let r_n denote the radius and c_n denote the center of K_n. By Theorem 10, $|c_r - c_{n+1}| \leq r_n - r_{n+1}$ for each positive integer n, so r_1, r_2, r_3, \ldots is a non-increasing positive number sequence. Therefore, by Theorem 7, r_1, r_2, r_3, \ldots has a non-negative sequential limit r.

Suppose $r > 0$. Then $r/2 > 0$, so there exists a positive number N_1 such that if n is an integer greater than N_1, $|r_n - r| < r/2$. Further, by Theorem 9, r_1, r_2, r_3, \ldots converges, so there exists a positive number N_2 such that if m and n are integers greater than N_2, $|r_m - r_n| < r/2$. Let N denote $N_1 + N_2$. Then if $m > n > N$, K_m is a subset of K_n, so, by Theorem 10, $|c_n - c_m| \leq r_n - r_m < r/2$. But $|r_m - r| < r/2$, or $r - r/2 \leq r_m < r + r/2$, so $r/2 \leq r_m$. Therefore, if n^* denotes a particular integer greater than N, then $|c_n - c_m| < r_n$ for each positive integer m greater than n^*; that is, c_n belongs to K_m for each positive integer m greater than n^*. But c_n belongs to K_n, and K_n is a subset of each element of the sequence K_1, K_2, K_3, \ldots which precedes it, so for each positive integer n, c_n belongs to K_n.

Suppose $r = 0$. If Z is a number, there is a real number x and there is a real number y such that $Z = x + iy$. It is also true that $|Z| \geq |x|$ and $|Z| \geq |y|$. For each positive integer n, let a_n denote a real number and b_n denote a real number such that $c_n = a_n + b_n i$.
For each positive integer n, K_{n+1} is a subset of K_n, so $|c_n - c_{n+1}| \leq r_n - r_{n+1}$.

$r_n - r_{n+1} \cdot |c_n - c_{n+1}| = |(a_n - a_{n+1}) + (b_n - b_{n+1})|$, so $|a_n - a_{n+1}| \leq |c_n - c_{n+1}| r_n - r_{n+1}$, or $a_n - (r_n - r_{n+1}) \leq a_{n+1} + (r_n - r_{n+1})$.

Therefore, $a_n - a_{n+1} \leq r_{n+1} - r_n$, and $a_{n+1} + r_{n+1} \leq a_n + r_n$.

Let S_{2n-1} denote $a_n + r_n$ and S_{2n} denote $a_n - r_n$. Then if $p > 0$, $p/2 > 0$, and the number sequence r_1, r_2, r_3, ... has sequential limit 0, so there exists a positive number N, such that if k is an integer greater than N, $|r_k - 0| = |r_k| < p/2$. Suppose k is such an integer. Then $|S_{2k} - S_{2k-1}| = |(a_k - r_k) - (a_k + r_k)| = |2r_k| < p$. For each positive integer n, $r_n > 0$, so $S_{2k-1} = a_k + r_k \geq a_k - r_k = S_{2k}$. Therefore, the hypothesis of Theorem 8 is satisfied, and S_1, S_2, S_3, ... has a sequential limit a.

There exists a positive number N_2 such that if n is an integer greater than N_2, $|S_n - a| < p/2$. Suppose $N = 2(N_1 + N_2)$ and m' is an integer greater than N. Then there is an integer m greater than $N_1 + N_2$ such that either $m' = 2m$ or $m' = 2m-1$.

If $m' = 2m$, $|S_m - a| = |a_m - r_m - a| \geq |a_m - a| - |r_m|$, so $|a_m - a| \leq |S_m - a| + |r_m| < p/2 + p/2 = p$. If $m' = 2m-1$, $|S_m - a| = |a_m + r_m - a| \geq |a_m - a| - |r_m|$, so $|a_m - a| \leq |S_m - a| + |r_m| < p$. Therefore, a is a sequential limit of a_1, a_2, a_3, This same argument can be used to show that b_1, b_2, b_3, ... has a sequential limit b.
Suppose \(c = a + bi \). Then if \(p > 0 \), there is a positive number \(N_1 \) such that if \(n \) is an integer greater than \(N_1 \), \(|a_n - a| < p/2 \), and there is a positive number \(N_2 \) such that if \(n \) is an integer greater than \(N_2 \), \(|b_n - b| < p/2 \), so if \(n \) is an integer greater than \(N_1 + N_2 \), \(|c_n - c| = |(a_n - a) + (b_n - b)i| \leq |a_n - a| + |b_n - b| < p/2 + p/2 = p \), so \(c \) is a sequential limit of \(c_1, c_2, c_3, \ldots \).

Suppose \(c_m \) is the center of some disk \(K_n \) of the nest of disks \(K_1, K_2, K_3, \ldots \) and that \(c \) does not belong to \(K_n \). Then \(|c_n - c| = r_n + q \), where \(q > 0 \), \(|c_n - c_n| + |c_m - c| \geq |c_n - c| \), so \(|c_n - c_n| + |c_m - c| \geq r_n + q \). Therefore, if \(c \) did not belong to some disk of the nest \(K_1, K_2, K_3, \ldots \) \(c \) would not be the sequential limit of \(c_1, c_2, c_3, \ldots \).

Theorem 12. If \(S_1, S_2, S_3, \ldots \) is a convergent number sequence, there exists a nest \(K_1, K_2, K_3, \ldots \) of disks such that:

1. If \(n \) is a positive integer, \(S_n \) is in \(K_n \), and
2. If \(p > 0 \), there exists a positive number \(N \) such that if \(n \) is an integer greater than \(N \) and \(r_n \) is the radius of \(K_n \), \(r_n < p \).

Proof: For each positive integer \(\frac{1}{k}, 1/k > 0 \), so there exists a positive integer \(N \) such that if \(m \) and \(n \) are integers greater than \(N \), \(|S_m - S_n| < 1/k \). For each positive integer \(k \), let \(N_k \) denote one such number. Then let \(n_1 \)
denote an integer greater than N_1 and for each positive integer k greater than one, let n_k denote an integer greater than $N_k + n_{k-1}$.

If n is an integer and $n < n_{k+1}$, let K_n denote the disk with center S_n and radius $r_n = 1/k\left[1 + 1/n\right]$.

Then, if for some integer k, n and $n + 1$ are both greater than n_k and less than or equal to n_{k+1},
\[
1/k\left[1 + 1/n\right] - 1/k\left[1 + 1/n + 1\right] = 1/k\left[n + 2\right] - \frac{n + 2}{n + 1} = 1/k\left[1/n(\frac{1}{n+1})\right] = 1/k\left[1/(n+1)\right] \geq \left|S_{n_k} - S_{n+1}\right|,
\]
so K_{n+1} is a subset of K_n.

If for some integer k, $n = n_k$, then
\[
1/k\left[1 + 1/n\right] - 1/k\left[1 + 1/n + 1\right] = 1/k\left[-1/n\right] - 1/k\left[1 + 1/n + 1\right] = 1/k\left[1/n(\frac{1}{n+1})\right] = 1/k\left[1/(n+1)\right] \geq \left|S_{n_k} - S_{n+1}\right|,
\]
so K_{n+1} is a subset of K_n.

Therefore, $K_1, K_2, K_3, ...$ is a nest of disks.

Theorem 13. Suppose that the number sequence $S_2, S_3, S_4, ...$ converges. There is a number S which is the sequential limit of $S_2, S_3, S_4, ...$

Proof: By Theorem 12, there is a nest of disks $K_1, K_2, K_3, ...$ such that if n is a positive integer, $S_n \in K_n$, and such that if $p > 0$, there is a positive number N such that if n is an integer greater than N and r_n is the radius of K_n, then $r_n < p$.

By Theorem 11, there is a number S such that if n is a positive integer, S is in K_n.

Therefore, if \(p > 0 \), and \(N \) denotes a positive number such that if \(n \) is an integer greater than \(N \), \(r_n \leq p \), then \(|S_n - S| < p \). Therefore, \(S \) is a sequential limit of \(S_1, S_2, S_3, \ldots \).
CHAPTER IV

ABSOLUTE CONVERGENCE

Definition 5. Suppose that C_1, C_2, C_3, ... is a number sequence. The statement that C_1, C_2, C_3, ... converges absolutely means that if $S_1 = |C_2 - C_1|$ and $S_{n+1} = S_n + |C_{n+1} - C_n|$ for each positive integer n, then the sequence $S_1, S_2, S_3, ...$ converges.

Theorem 14. For the number sequence C_1, C_2, C_3, ... to converge absolutely, it is necessary and sufficient that there be a nest, $K_1, K_2, K_3, ...$ of disks such that C_n is the center of K_n, $n = 1, 2, 3, ...$

Proof: Suppose the sequence C_1, C_2, C_3, ... converges absolutely, i.e., that if $S_1 = |C_2 - C_1|$ and $S_{n+1} = S_n + |C_{n+1} - C_n|$ for each positive integer n, then the sequence $S_1, S_2, S_3, ...$ converges.

By Theorem 13, $S_1, S_2, S_3, ...$ has a sequential limit S. $S_1, S_2, S_3, ...$ is non-decreasing so S must be not less than S_n for each positive integer n.

Therefore, $1 + S - S_n$ is a positive number for each positive integer n, so for each positive integer n, let K_n denote the disk with center C_n and radius $1 + S - S_n$. $|C_{n+2} - C_{n+1}| = S_{n+1} - S_n = (1 + S - S_n) - (1 + S - S_{n+1})$, so by Theorem 10, K_{n+2} is a subset of K_{n+1}. If K_1 denotes the disk with center C_1 and radius $1 + S$, $|C_2 - C_1| = S_1 = (1 + S) - (1 + S - S_1)$, so by Theorem 10, K_2 is a subset of K_1. Therefore, $K_1, K_2, K_3, ...$ is a nest of disks having centers $C_1, C_2, C_3, ...$.
Suppose there is a nest K_1, K_2, K_3, \ldots of disks such that C_n is the center of K_n for each positive integer n. $S_1 = |C_2 - C_1| \leq r_1 - r_2$

$S_2 = S_1 + |C_3 - C_2| \leq (r_1 - r_2) + (r_2 - r_3) = r_1 - r_3$, $S_3 = S_2 + |C_4 - C_3| \leq (r_1 - r_3) + (r_3 - r_4) = r_1 - r_4$, \ldots

$S_{n+1} = S_n + |C_{n+2} - C_{n+1}| \leq (r_1 - r_{n+1}) + (r_{n+1} - r_{n+2}) = r_1 - r_{n+2}$

r_1, r_2, r_3, \ldots is a non-increasing positive number sequence so by Theorem 7 there is a non-negative real number r such that r is the sequential limit of r_1, r_2, r_3, \ldots. For each positive integer n, $r_n \leq r$, so $r_1 - r_n \leq r_1 - r$.

$S_{n+1} = S_n + |C_{n+2} - C_{n+1}| \leq r_1 - r_{n+2} \leq r_1 - r$, so $S_n \leq S_{n+1} \leq r_1 - r$, and, by Corollary 7a, there is a real number S which is the sequential limit of S_1, S_2, S_3, \ldots.

Theorem 15. Suppose that C_1, C_2, C_3, \ldots is a number sequence such that $C_{n+1} \neq C_n$, $n = 1, 2, 3, \ldots$. For C_1, C_2, C_3, \ldots to converge absolutely, it is necessary and sufficient that there be a positive number sequence d_1, d_2, d_3, \ldots such that

$$\frac{|C_{n+2} - C_{n+1}|}{|C_{n+1} - C_n|} \leq \frac{d_n}{1 + d_{n+1}}, \quad n = 1, 2, 3, \ldots$$

Moreover, if d_1, d_2, d_3, \ldots is such a sequence and C is the sequential limit of C_1, C_2, C_3, \ldots then

$$|C_{n+1} - C| \leq d_n |C_{n+1} - C_n|, \quad n = 1, 2, 3, \ldots$$

Proof: Suppose $S_1 = |C_2 - C_1|$ and $S_{n+1} = S_n + |C_{n+2} - C_{n+1}|$, $n = 1, 2, 3, \ldots$

Suppose there is a positive number sequence d_1, d_2, d_3, \ldots such that
Then, if \(n = 1 \), \(\frac{d_1}{1 + d_2} > \frac{S_2 - S_1}{S_1} \), and if \(n \) is an integer greater than 1, \(\frac{d_n}{1 + d_{n+1}} > \frac{S_{n+1} - S_n}{S_n - S_{n-1}} \).

\(S_2, S_3, \ldots \) is an increasing number sequence, i.e., \(S_{n+1} - S_n > 0 \), for each positive integer \(n \), \(d_1 S \geq (1 + d_2) (S_2 - S_1) = S_2 - S_1 + d_2 (S_2 - S_1) \),

\(d_2 (S_2 - S_1) \geq (1 + d_3) (S_3 - S_2) = S_3 - S_2 + d_3 (S_3 - S_2) \),

so \(d_1 S \geq S_3 - S_1 + d_3 (S_3 - S_2) \), \(d_3 (S_3 - S_2) \geq (1 + d_4) (S_4 - S_3) = S_4 - S_3 + d_4 (S_4 - S_3) \), so \(d_1 S \geq S_4 - S_1 + d_4 (S_4 - S_3) \), and if \(d_1 S \geq S_{n-1} S - S_1 + d_{n-1} (S_{n-1} - S_n) \), \(d_{n-1} (S_{n-1} - S_n) \geq (1 + d_n) (S_n - S_{n-1}) = S_n - S_{n-1} + d_n (S_n - S_{n-1}) \), so \(d_1 S \geq S_n - S_1 + d_n (S_n - S_{n-1}) \), and \(d_n (S_n - S_{n-1}) > 0 \). Therefore, \((1 + d_1) S \geq S_n\) for each positive integer \(n \), and so by Corollary 7a \(S_1, S_2, S_3, \ldots \) has a sequential limit \(S \). By Theorem 9, the sequence \(S_1, S_2, S_3, \ldots \) converges, so \(C_1, C_2, C_3, \ldots \) is absolutely convergent.

Suppose that the sequence \(C_1, C_2, C_3, \ldots \) is absolutely convergent, i.e., that the sequence \(S_1, S_2, S_3, \ldots \) is convergent. By Theorem 13, \(S_1, S_2, S_3, \ldots \) has a sequential limit \(S \), and \(S_1, S_2, S_3, \ldots \) is increasing so \(S > S_n \) for each positive integer \(n \).

If for each integer \(n \) greater than 1, \(d_n = \frac{S - S_n}{S_n - S_{n-1}} \), then \(d_n > 0 \) and

\[
\frac{d_{n+1}}{S_{n+1} - S_n} = \frac{S - S_{n+1}}{S_n - S_{n-1}} + 1 + d_{n+1} = \frac{S_{n+1} - S_n}{S_n} + \frac{S - S_{n+1}}{S_{n+1} - S_n} = \frac{S - S_n}{S_n - S_{n-1}}.
\]
Therefore, \(d_n = \frac{S - S_n}{1 + d_{n+1}} \cdot \frac{S_{n+1} - S_n}{S - S_n} = \frac{S_{n+1} - S_n}{S - S_{n-1}} = \frac{|C_{n+2} - C_{n+1}|}{|C_{n+1} - C_n|} \)

If \(d_1 = S - S_1 \) then \(d_1 > 0 \), and \(1 + d_2 = S - S_1 \) so \(d_1 = \frac{S - S_1}{1 + d_2} \)

\[
\frac{S - S_1}{S} \cdot \frac{S_2 - S_1}{S - S_1} = \frac{S - S_1}{S_1} = \frac{|C_3 - C_2|}{|C_2 - C_1|}.
\]

Therefore, there is a positive number sequence \(d_1, d_2, d_3, \ldots \) such that

\[
\frac{d_n}{1 + d_{n+1}} \geq \frac{|C_{n+2} - C_{n+1}|}{|C_{n+1} - C_n|}, \quad n = 1, 2, 3, \ldots
\]

Suppose \(C \) denotes the sequential limit of \(C_1, C_2, C_3, \ldots \).

If \(n \) is a positive integer, \(d_n \left| C_{n+1} - C_n \right| \geq (1 + d_n) \left| C_{n+2} - C_{n+1} \right| = \left| C_{n+2} - C_{n+1} \right| + d_n \left| C_{n+2} - C_{n+1} \right|\)

\[
d_n \left| C_{n+1} - C_n \right| \geq d_n \left| C_{n+2} - C_{n+1} \right| + d_n \left| C_{n+3} - C_{n+2} \right| = d_n \left| C_{n+3} - C_{n+2} \right| + d_n \left| C_{n+4} - C_{n+3} \right|.
\]

So, \(d_n \left| C_{n+1} - C_n \right| \geq d_n \left| C_{n+2} - C_{n+1} \right| + d_n \left| C_{n+3} - C_{n+2} \right| + d_n \left| C_{n+4} - C_{n+3} \right| \)

but \(\left| C_{n+2} - C_{n+1} \right| + \left| C_{n+3} - C_{n+2} \right| \geq \left| C_{n+3} - C_{n+1} \right| \), so \(d_n \left| C_{n+1} - C_n \right| \geq \left| C_{n+3} - C_{n+1} \right| \)

\[
d_n \left| C_{n+1} - C_n \right| \geq \left| C_{n+3} - C_{n+2} \right|.
\]

\[
d_n \left| C_{n+3} - C_{n+2} \right| \geq (1 + d_{n+3}) \left| C_{n+4} - C_{n+3} \right| = \left| C_{n+4} - C_{n+3} \right| + d_{n+3} \left| C_{n+4} - C_{n+3} \right| + d_{n+3} \left| C_{n+5} - C_{n+4} \right|.
\]

By continuing this process, we find that if \(k \) is a positive integer, \(d_n \left| C_{n+1} - C_n \right| \geq \left| C_{n+1+k} - C_{n+1} \right| + d_{n+k} \left| C_{n+1+k} - C_{n+k} \right| \).
Let \(q \) denote the least non-negative number such that \(d_n \left| C_{n+1} - C_n \right| + q \geq \left| C_{n+1} - C \right| \). Then if \(k \) is a positive integer, \(\left| C_{n+1+k} - C \right| \geq q \).

\(C \) is the sequential limit of \(C_1, C_2, C_3, \ldots \) so if \(p > 0 \), there exists a positive number \(N \) such that if \(m \) is an integer greater than \(N \), \(p > \left| C_m - C \right| \).

If \(m \) is greater than \(N \), \(n+1+m > N \), so \(p > \left| C_{n+1+m} - C \right| \geq q \), i.e., if \(p > 0 \), \(p > q \). Therefore, by Theorem 3, \(q = 0 \) and \(d_n \left| C_{n+1} - C_n \right| \geq \left| C_{n+1} - C \right| \).
VITA

Roger Banis Sorrells was born in Plaquemine, Louisiana, on December 15, 1936, the son of Maurine C. and Banis J. Sorrells. After completing his work at Highland Park High School, Dallas, Texas, in 1955, he entered Rice Institute at Houston, Texas. He attended Southern Methodist University at Dallas, Texas, during the summer of 1957, and since 1958 he has attended The University of Texas, at Austin, where he received the degree of Bachelor of Science in Physics in 1960. In September, 1960, he entered the Graduate School of the University of Texas. He has been employed as a teaching assistant in the Mathematics Department of The University of Texas during his graduate work. He was married to Cynthia Hammond Wickizer in June of 1961.

Permanent address: 2820 Purdue
Dallas, Texas

This thesis was typed by Mrs. Roger B. Sorrells