
According to many best practices frame-
works for quality management and process 
improvement, statistical thinking is an intrin-
sic part of building organizational capability. 
In all of these frameworks there is a degree 
of flexibility in how the statistical thinking 
concepts are implemented, because these 
frameworks apply to many different contexts. 
Flexibility, however, also leads to ambiguity 
and inconsistency. The purpose of this article 
is to identify what has been observed in some 
organizations implementing statistical think-
ing. These observations can be lessons learned 
to help accelerate the learning curve for oth-
ers implementing these frameworks.
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INTRODUCTION
Statistical thinking is an integral concept to many best prac-
tices frameworks, such as the Capability Maturity Model® 
for Software (Software CMM®) (Paulk et al. 1995), CMM 
IntegrationSM (CMMI®) (Chrissis, Konrad, and Shrum 2006), 
the eSourcing Capability Model for Service Providers (eSCM-
SP) (Hyder, Heston, and Paulk 2004a; Hyder 2004b), ISO®/IEC 
15504 (Process Assessment) (ISO/IEC 2003), Six Sigma® 
(Breyfogle 2003), and ISO 9001 (Quality Management Systems) 
(ISO 2000). Statistical thinking basically means the decision 
makers incorporate a rigorous understanding of variation into 
the decision-making process. Speaking as authors and contribu-
tors to a variety of improvement frameworks, the authors of this 
article have observed on many occasions that the implementa-
tion of statistical thinking by the organizations implementing 
these frameworks often fall short of their expectations (Paulk 
et al. 2005; Paulk, Hyder, and Heston 2006).

Statistical thinking is based on three fundamental axioms 
(Hare et al. 1995):

•	 All work is a series of interconnected processes.

•	 All processes are variable.

•	 Understanding variation is the basis for evidence-based 
management and systematic improvement.

Statistical thinking with a view toward management and 
control acknowledges that variation must be taken into account 
in the decision-making process; performance is constrained by 
the variation built into the system. Statistical thinking with a 
view toward improvement implies minimizing variability, which 

S O F T W A R E  M E T R I C S ,  M E A S U R E M E N T ,

 A N D  A N A L Y T I C A L  M E T H O D S

Common 
Pitfalls in 
Statistical 
Thinking

Mark C. Paulk and ElainE B. HydEr
Carnegie Mellon University

12  SQP VOL. 9, NO. 3/© 2007, ASQ



Common Pitfalls in Statistical Thinking

in turn implies that the sources of variation must be 
identified and eliminated or reduced. Variation can 
only be eliminated if the distinction between common 
and special causes is understood, since the actions to 
correct special causes of variation differ significantly 
from those needed to systematically change the com-
mon cause system.

This article presents a discussion of what has been 
observed in some organizations when implementing 
quality and process frameworks (Paulk, Goldenson, 
and White 2000; Paulk and Chrissis 2000; Paulk and 
Chrissis 2001; Wheeler 2003). Where appropriate, the 
discussion of mistakes that organizations make with 
respect to statistical thinking is tied to specific frame-
works, but the observations are generally applicable to 
other improvement frameworks. Many of the organiza-
tions where these observations were made are software 
developers using multiple frameworks, including Six 
Sigma, ISO 9001, the eSCM-SP, Software CMM, and/or 
CMMI. The authors have been contributors to a variety 
of models and standards, including the eSCM-SP, the 
Software CMM, and ISO/IEC 15504, and reviewers of 
other frameworks, including ISO 9001 and CMMI.

BEST PRACTICE 
FRAMEWORKS
There are two major strategies for improving per-
formance: framework based and principle based. A 
framework-based strategy uses models and standards 
as best practice frameworks to identify what processes 
and systems should be implemented in a successful 
organization. Certification in some framework-based 
strategies, such as ISO 9001, is binary; an organiza-
tion is either compliant with the standard or not. 
Models such as CMMI and the eSCM-SP measure orga-
nizations or processes using a form of ordinal scale; 
five-level scales, such as capability levels or maturity 
levels, are common. Best practice frameworks identify 
what to do, but do not usually describe how to do it or 
performance levels for specific tasks.

The second strategy is principle based. The orga-
nization’s processes and systems are measured and 
compared to business and improvement objectives to 
identify needed improvements. Measurement trends 
are used to confirm and quantify improvements.  
Framework-based strategies naturally evolve toward 
principle-based strategies tailored to the business 
needs of the organization as the foundational capabili-

ties described by the framework are successfully put 
in place. By focusing on its business objectives, the 
organization can leverage a variety of strategies, allow-
ing it to develop an integrated improvement strategy. 
For example, many organizations initiate improvement 
efforts with ISO 9001, then adopt more focused frame-
works such as CMMI for product development, and 
then use principle-based strategies such as Six Sigma 
to drive their improvement after achieving the higher 
levels in CMMI.

All of the multilevel frameworks explicitly rely on 
establishing measurement and analysis capabilities 
at the lower levels and applying statistical thinking 
in decision making at the higher levels. Measurement 
and statistical thinking are intrinsic to the principle-
based strategies.

The eSCM-SP exemplifies this roadmap. It has 
three purposes: 1) to give service providers guidance 
that will help them improve their capability across 
the sourcing life cycle; 2) to provide clients with an 
objective means of evaluating the capability of service 
providers; and 3) to offer service providers a standard 
to use when differentiating themselves from competi-
tors. Released in April 2004, eSCM–SP v2 comprises 
84 practices, structured in five capability levels, with 
level 5 being the most advanced.

Measurement and analysis are embedded through-
out the practices (Paulk et al. 2005). Statistical 
thinking is primarily embedded in two capability 
level 4 practices on process capability baselines and 
benchmarking capability baselines. These identify 
the expected performance of a process and are 
typically based on comparing the natural process 
limits of a control chart to the specification limits 
for the process. Benchmarking relies on being able to 
identify when two processes have significantly differ-
ent performances—both statistical significance and 
practical significance.

The authors of the eSCM-SP had certain expec-
tations for a complete implementation of both 
measurement and analysis and statistical thinking 
(Paulk, Hyder, and Heston 2006), which would be 
shared by most framework authors. To achieve the 
level of statistical thinking intended by the authors, an 
organization should do six fundamental things:

1. Identify the measurable objectives that will be 
the basis for judging success. These objectives 
should address both project and organizational 
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objectives and include business, improvement, 
and client objectives. 

2. Create processes that are well defined and can be 
measured for their impact on those objectives. 

3. Create a measurement program that uses a 
small set of balanced measures to help man-
agement determine the actions to take to meet 
the objectives. 

4. Create a measurement infrastructure, includ-
ing the tools and repositories, to support 
decision making. 

5. Use appropriate analytical techniques, includ-
ing statistical process control (SPC), to manage 
the critical processes. 

6. Use measurement data and analysis in making 
decisions, both to achieve business objec-
tives and to improve performance (note that 
improvement should be both statistically and 
practically significant). 

The authors of the eSCM-SP believe the model 
should not overly constrain an organization’s imple-
mentation of either measurement and analysis or 
statistical thinking. While an organization should 
incorporate data into its decision making where it will 
add value and should demonstrate the understanding 
of variation intrinsic to statistical thinking at higher 
capability levels, the model must allow a variety of 
implementations to fit the environments where the 
model may be adopted. The requirements in the model 
are therefore written at a high level of abstraction, 
which allows flexibility, but which can also lead to 
inappropriate and ineffective implementations when 
an organization implements the form of the practices 
without an understanding of their heart. This phi-
losophy of not over constraining the implementation 
of best practices is broadly held among developers of 
improvement frameworks, although the implications of 
“over constrain” may change depending on where the 
framework is targeted.

As previously stated, the authors of this article 
are also authors of the eSCM-SP, as well as authors, 
contributors, and reviewers of a variety of other qual-
ity and process frameworks. In discussions with their 
colleagues, they believe it is fair to say that they share 
the fundamentals described previously, although 
they have had many interesting debates on imple-

mentation specifics. For example, while agreeing on 
the importance of statistical thinking, some of the 
authors’ colleagues would argue against the appropri-
ateness of control charts for predominantly creative 
work, such as design, while others would argue that 
SPC is the optimal strategy to use for improvement 
for all processes.

MISTAKES WHEN 
IMPLEMENTING  
STATISTICAL THINKING 
There are a number of common mistakes that organi-
zations make when implementing statistical thinking:

•	 Using common sense to ignore flawed pro-
cesses or inappropriate statistical techniques

•	 Setting natural process limits using statistical 
techniques that are not economically efficient

•	 Using incorrect formulae, such as standard 
deviation, for calculating natural process lim-
its

•	 Failing to perform the causal analysis that 
leads to taking informed action based on sta-
tistical signals

•	 Confusing targets and natural process limits as 
triggers

•	 Analyzing data from mixtures of (operation-
ally) different processes

•	 Failing to balance stability and improvement

•	 Using measurement for motivational purposes

The use of inefficient techniques for statistical 
analysis and control does not necessarily mean that 
an organization has not satisfied the level 4 prac-
tices in the eSCM-SP, but there are opportunities 
for improvement. Whether a particular statistical 
technique is inefficient (and perhaps ineffective) for 
a particular environment can be debated. Suggesting 
that there are improvement opportunities does not 
mean the organization has failed to address the 
intent of a practice. From a certification perspec-
tive, the authors do not judge the goodness of an 
implementation, simply whether there is an adequate 
implementation that can act as the foundation for 
action and continual improvement. 
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Applying Common Sense
A primary concern in deploying best practices is that 
the organization may not always follow its own docu-
mented processes. Staff may apply common sense 
to ignore real or perceived flaws in the documented 
process. The authors do not wish to discourage the use 
of common sense when following the documented pro-
cess would not add value, understanding, or insight. 
It does, however, raise an issue about compliance to 
the documented processes and the effectiveness of the 
process implementation. This is a sensitive point, but 
requiring that staff follow an obviously inappropriate 
process would damage the credibility of the authors 
of the framework being used, the assessment or audit 
team, and those defining the process in question. An 
assessment/audit team cannot ignore such a problem; 
it must report both the noncompliance and the issues 
with the documented process. 

For example, some organizations set upper and 
lower natural process limits at the 5th and 95th per-
centiles of their data rather than using control charts. 
Analyzing the bottom 5 percent of the data may be 
pointless, particularly when there is a natural bound-
ary for the data, such as zero. For a skewed distribution 
where a relatively high percentage of the data—more 
than 5 percent—may be at zero, analyzing the points 
in the bottom 5th percentile appears unreasonable. 
Observations where the data have a value of zero can be 
expected to occur occasionally in this process, and ana-
lyzing the bottom 5 percent provides little or no insight. 
Analyzing how often—and whether—zero events should 
occur may be a valid question, but exploring the “whys” 
of the common cause system is a process improvement 
question, not a process control question. 

Ignoring data below the 5th percentile limit because 
it does not make sense to treat those observations 
as atypical is an example of doing the right thing, 
even though the guideline, which implements a poor 
statistical technique, would require doing something 
else . . . and where implementing a superior statistical 
technique, for example, an XmR chart, would lead to 
doing the right thing for the right reason. Blindly doing 
a causal analysis where common sense indicates that no 
value would be obtained would be counterproductive.

Sometimes the meaning of the 95th percentile limit 
is misinterpreted. It does not mean to pick the five 
largest data values and do a causal analysis. It means 
pick the largest 5 percent. If one has 20 data points, 

it means the largest value; for 1,000 data points, it 
means the largest 50 values.

The prescription for simple arithmetic errors is 
training and education, with perhaps better tool sup-
port. The prescription for failing to follow a nonsensical 
process is more challenging, since the solution involves 
defining processes—and analytic techniques—that are 
appropriate for the kind of work being done. Defining 
“good” measures and analytic techniques is an exten-
sion of the implied need for “good processes” at the 
lower levels of models such as the eSCM-SP and CMMI. 
While how-to “goodness” is deliberately out of scope 
for what-to-do frameworks, a process is what one does, 
not what he or she documents. Processes that are not 
used fail to build on the lower-level capabilities that 
are a prerequisite for the higher-level statistical think-
ing in these models.

The Economic Benefit  
of Natural Process Limits
There are several ways to determine the natural pro-
cess limits for a capability baseline. The expectation 
is that the limits will be defined based on a statisti-
cal technique, such as control charts or prediction 
intervals, although simple graphical techniques may 
be sufficient to address the analytical needs (Wood, 
Capon, and Kaye 1998). 

Classical SPC uses 3σ limits for reasons of eco-
nomic benefit. There is an economic cost associated 
with analyzing process observations. Any data points 
outside the 3σ limits are unlikely to be part of the 
normal operation of the process, so there will be few 
“false alarms” (Wheeler’s Empirical Rule for a set of 
homogenous data, that is, the common cause system, 
is that more than 99 percent of the observations will be 
within the 3σ limits with no requirement of normality 
(Wheeler and Chambers 1992; Wheeler 2000)). 

Using 5 percent and 95 percent limits is not sta-
tistically “wrong,” but identifying 10 percent of the 
data as signals of possible special causes is inefficient 
since 90 percent or more of the signals are likely to be 
false alarms. Unnecessarily analyzing 9 percent of the 
events being controlled (90 percent false alarms of the 
10 percent of the observations that are signals) is inef-
ficient when more effective tools are available. Control 
chart limits are designed to be economically efficient 
and simple to calculate (Wheeler and Chambers 1992; 
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While it may be simple to use the “s” key on a 
calculator, or the STDEV function in a spreadsheet, to 
calculate this estimator for σ, when there are special 
causes of variation in the data, the ±3s limits can be five 
to six times as large as the correct ±3σ limits. One com-
mon response to these wide limits is to use ±s or ±2s 
as the limits in an attempt to establish more credible 
bounds. Anytime the limits are “adjusted” because they 
are too wide, the natural suspicion is that there are fun-
damental problems in collecting valid data, aggregating 
dissimilar data (perhaps from different underlying pro-
cesses), or using inappropriate statistical techniques.

The correct formulae are also simple. The upper 
and lower natural process limits for the X part of an 
XmR chart, for example, are calculated by

UNPL
X
 = X + 2.66mR

LNPL
X
 = X - 2.66mR

UCL
X
 = 3.268mR

where the “bar” above the variable denotes the aver-
age of the individual X values and the moving ranges, 
respectively. A moving range is the difference between 
successive data points. The lower natural process 
limit for the moving range chart is always zero. There 
are many different kinds of control charts that one 
may select, depending on sample size (the XmR chart 
uses individual observations), statistical distributions 
assumed, whether variables or attributes data are 
being used, and so forth. 

The ±3s limits are not inflated if there are no 
special causes of variation in the data, since the 
global measure of dispersion s is a reasonable estima-
tor of σ in the common cause system under those 
circumstances. But that implies identifying the sig-
nals using a different technique and just using the 
natural process limits for calculating the capability 
baselines—a consequence of cascading inappropriate 
and ineffective statistical techniques. Instances where 
“natural process limits” are based on the 5th and 95th 
percentiles or ±2s are usually indicators of incorrect 
calculations that have fatally expanded the limits from 
a usability perspective.

The prescription for addressing ±3s limits differs 
from that for percentile-based limits for a simple rea-
son: the mistake is based on a misunderstanding of 

Wheeler 2003). The 3σ limits in control charts have 
been demonstrated to balance signals and false alarms 
at an economically useful point. While other criteria 
may be used to trigger action, they should be used by 
people who understand the tradeoffs they are making.

The prescription for failing to use effective and 
efficient tools builds on applying both relatively 
sophisticated statistical expertise and a profound 
knowledge of the engineering methodologies and 
application domains associated with the processes 
to be controlled. Inefficient techniques are a cost 
reduction opportunity, but inefficient techniques are 
arguably superior to the heuristics and intuition used 
in measurement and analysis at the lower levels.

Using Standard Deviations  
in Natural Process Limits
A classic mistake from an SPC perspective is using the 
sample standard deviation in calculating the upper 
and lower limits for a control chart. When Walter 
Shewhart described the control chart, he pointed out 
the importance of using the average (or median) of dis-
persion statistics rather than using a global dispersion 
statistic (Shewhart 1931). This mistake continues to 
be made despite numerous articles demonstrating that 
incorrectly calculated natural process limits using this 
formula can be dramatically wider than those using 
the correct formulae (Paulk 2000b; Pyzdek 1998; 
Wheeler and Chambers 1992; Wheeler 1994; 2003).

The sample standard deviation (s) is an estimate 
of the population standard deviation (σ) in classical 
statistics, but one of the assumptions (sometimes 
not articulated) in using it as an estimator is that the 
sample comes from a homogenous population. The 
standard way of writing the formula for the sample 
standard deviation is:

s =

n

i=1

(xi − x)2

n − 1

Two alternative, equivalent formulas for calculating 
the sample standard deviation are:

s =

n

i=1

x2
i − nx2

n − 1

or

16  SQP VOL. 9, NO. 3/© 2007, ASQ



Common Pitfalls in Statistical Thinking

the correct statistical techniques. Train the analysts 
in SPC! There are times when the sample standard 
deviation is correct and times when it is not. Useful 
statistical debates depend on understanding the dif-
ference. One can claim to have considered the cost 
intrinsic to analyzing 10 percent of the data, however, 
it is much more difficult to defend using limits that may 
be five times as large as correctly calculated limits. 

Ignoring Causal Analysis
Special causes of variation should not be removed 
without a causal analysis of why the special event 
occurred. Special causes are a form of outlier, and 
while outliers may skew the results of a statisti-
cal analysis, outliers that are not clearly erroneous 
should neither be completely discarded nor blindly 
included in a statistical analysis (Neter, Kutner, and 
Nachtscheim 1996). Discarding outliers without root 
cause analysis can adversely affect the validity of 
conclusions. Sometimes the outliers contain useful 
information about the common cause system, which 
can be extracted during the causal analysis.

The prescription for ignoring causal analysis depends 
on an assumption that decisions will be made as the 
result of identifying unusual events. A lack of causal 
analysis is usually associated with a lack of action and 
suggests that a deeper problem needs to be addressed. 
Folding together measurement, analysis, and action is 
built into evidence-based management and SPC.

Confusing Targets and Capability
The authors have observed benchmarking guidelines 
that state that if actual performance is within an arbi-
trary threshold, say 5 percent of the benchmark, then 
performance is acceptable; if the benchmark is more 
than 5 percent better, improvement should be done to 
the process. The choice of 5 percent as the trigger for 
action is essentially arbitrary. Such arbitrary thresh-
olds do not indicate an understanding of variation.

If a capability baseline has been determined 
for the process, then the natural process limits for 
performance can be used as the trigger for consid-
ering whether action should be considered (other 
techniques include analysis of variance or test of 
hypotheses, but the capability baselines provide an 
existing criterion). Given the large degree of varia-
tion in many software processes, it is likely that a 5 

percent difference from the average performance will 
be within the bounds of the typical variability of the 
process, so it is unclear that the benchmark process 
is truly superior to the process. 

Using a 5 percent criterion also ignores the prag-
matic consideration that a difference in performance 
should not only be real but also practically significant. 
If the software process is improved to the level of the 
benchmark—or even better—will that improvement 
be of value to the client or the provider? That is a 
decision that should be made in the context of other 
possible improvement actions that may have greater 
impact from a practical perspective.

An even worse criterion sometimes used is a 
simple greater-than comparison. Variation happens. 
Capability level 4 organizations should have an under-
standing of variation: Even if the values are different, 
is the difference statistically significant? Or is the dif-
ference simply part of the normal variation intrinsic 
to the process, which may be up in June and down in 
December? Identifying these patterns is a potential 
use of the capability baselines. If the performance 
is within the natural process limits of the capability 
baseline, then performance is considered unchanged 
(assuming that the process is stable, that is, that any 
special causes of variation have been analyzed and 
addressed appropriately). Only when the performance 
is outside the bounds of the capability baseline and in 
the “positive” direction should the trend be character-
ized as improving. 

The prescription is simply to set both objectives 
based on needs and desires and limits based on the 
voice of the process. From a goal-driven measurement 
perspective, one needs both. The understanding of 
variation intrinsic to statistical thinking implies more-
informed decisions, while goal-driven measurement 
establishes the context for making decisions in the 
first place.

Mixing and Stratifying
It is common for the process data to suggest that a 
mixture of different kinds of entities, that is, obser-
vations from different processes, have been grouped 
together on the control chart. When the special causes 
of variation are clusters of “complex” versus “simple” 
entities, for example, one inference may be that the 
“simple,” “typical,” and “complex” entities are enough 
different that they should be separately analyzed. 
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Different strata of data may be readily visible on a 
run chart when examined with the perspective that 
different processes may be overlaid on the chart. The 
decision on how to disaggregate the data into homog-
enous pieces is best made by someone with a profound 
understanding of the processes and measures in ques-
tion. The question of data homogeneity is a common one 
in statistics, and it should be thoughtfully considered.

The prescription for mixing and stratification is 
both fundamental and challenging, since expertise in 
measurement, statistical thinking, the processes, the 
methodologies, and the application domain is needed 
to understand what the data mean. Understanding the 
data must precede sophisticated analyses.

Stabilizing the Process
In addition to the informal stabilization of the process 
previously discussed, there is a tension between having 
a stable process and continual process improvement. 
Continual improvement means the process data for 
the previous process may not be valid for the new 
process, and new natural process limits may need 
to be recalculated on an ongoing basis. Even when 
most changes are incremental, compounded small 
changes can lead to dramatic improvements. Wheeler 
observes that continual improvement is a journey 
consisting of frequent, intermittent improvements, 
interspersed with alternating periods of predictable 
and unpredictable performance (Wheeler and Poling 
1998; Wheeler 2003).

The prescription is to use statistical thinking in 
both process control and process improvement. While 
this may seem a trite recommendation, it has appeared 
to be a useful insight for more than one organization. 
All too often, the users of best practice frameworks 
focus on the practices in the framework and lose sight 
of why they are being implemented in the first place.

Using Measurement for 
Motivational Purposes

It is always tempting to use the data collected for 
SPC as the basis for rewarding (or punishing) the 
individuals collecting the data. If measures are used 
to evaluate individuals, however, counterproductive 
behaviors are likely to arise. 

W. Edwards Deming was a strong advocate of 
statistical techniques, yet he was strongly averse 

to performance evaluations, declaring performance 
measurement the most powerful inhibitor to quality 
and productivity in the Western world. Although argu-
ably the most controversial of Deming’s points, Austin 
(1996) has shown that the potential for dysfunction 
arises when the measures used do not comprehensive-
ly cover all of the important factors affecting success. 
Unless the latitude to subvert measures can be elimi-
nated, or a means established for preventing the 
motivational use of data, dysfunction is destined to 
accompany organizational measurement.

The simplest prescription for preventing this kind 
of dysfunctional behavior is to divorce the measures 
used for process control and product insight from 
the reward and recognition system—but this simple 
prescription differs from normal practice in most 
organizations. Identifying a comprehensive set of mea-
sures, using methods such as the balanced scorecard 
(Kaplan and Norton 1996), would also address this 
concern, but it seems likely to remain a challenge for 
the foreseeable future.

CONCLUSIONS
The purpose of statistical thinking is to obtain mea-

surable value rather than to satisfy the requirements 
of a model or standard. The tools of SPC (including 
control charts) should be part of the toolkit for a 
capable organization. Appropriate tools should be used 
to answer questions that are important in achieving 
business objectives and to support continual, measur-
able improvement. Without this anchoring in business 
reality, statistical thinking cannot add value.

The requirements in frameworks such as the 
eSCM-SP are intentionally general and do not over-
ly constrain implementations, but they should not 
be viewed as a license for “teaching to the test.” 
Statistical thinking should address a business need 
more effectively and efficiently than nonstatistical 
techniques if it is appropriately applied. Many differ-
ent statistical techniques can be used to address these 
business needs; the examples in this article illustrate a 
few of the more commonly used ones. The mistakes in 
statistical thinking described in this article are neither 
new nor unique. The fact that a mistake is common 
does not mean that it will be forgiven in today’s com-
petitive environment, but it does mean organizations 
implementing statistical thinking correctly will have a 
competitive advantage.
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