Date of Original Version

12-20-2016

Type

Article

PubMed ID

27996043

Rights Management

Copyright The Authors, 2016

Abstract or Description

Carbon dioxide (CO2) storage into geological formations is regarded as an important mitigation strategy for anthropogenic CO2 emissions to the atmosphere. This study first simulates the leakage of CO2 and brine from a storage reservoir through the caprock. Then, we estimate the resulting pressure changes at the zone overlying the caprock also known as Above Zone Monitoring Interval (AZMI). A data-driven approach of arbitrary Polynomial Chaos (aPC) Expansion is then used to quantify the uncertainty in the above zone pressure prediction based on the uncertainties in different geologic parameters. Finally, a global sensitivity analysis is performed with Sobol indices based on the aPC technique to determine the relative importance of different parameters on pressure prediction. The results indicate that there can be uncertainty in pressure prediction locally around the leakage zones. The degree of such uncertainty in prediction depends on the quality of site specific information available for analysis. The scientific results from this study provide substantial insight that there is a need for site-specific data for efficient predictions of risks associated with storage activities. The presented approach can provide a basis of optimized pressure based monitoring network design at carbon storage sites.

DOI

10.1038/srep39536

Creative Commons

Creative Commons Attribution 4.0 License
This work is licensed under a Creative Commons Attribution 4.0 License.

Share

COinS
 

Published In

Scientific Reports, 6-39536.