Date of Original Version




PubMed ID


Rights Management

© The Author 2015. Published by Oxford University Press.

Abstract or Description

MOTIVATION: Storing, transmitting and archiving data produced by next-generation sequencing is a significant computational burden. New compression techniques tailored to short-read sequence data are needed.

RESULTS: We present here an approach to compression that reduces the difficulty of managing large-scale sequencing data. Our novel approach sits between pure reference-based compression and reference-free compression and combines much of the benefit of reference-based approaches with the flexibility of de novo encoding. Our method, called path encoding, draws a connection between storing paths in de Bruijn graphs and context-dependent arithmetic coding. Supporting this method is a system to compactly store sets of kmers that is of independent interest. We are able to encode RNA-seq reads using 3-11% of the space of the sequence in raw FASTA files, which is on average more than 34% smaller than competing approaches. We also show that even if the reference is very poorly matched to the reads that are being encoded, good compression can still be achieved.

AVAILABILITY AND IMPLEMENTATION: Source code and binaries freely available for download at∼ckingsf/software/pathenc/, implemented in Go and supported on Linux and Mac OS X.



Creative Commons

Creative Commons Attribution 4.0 License
This work is licensed under a Creative Commons Attribution 4.0 License.



Published In

Bioinformatics, 31, 12, 1920-1928.