Date of Original Version




PubMed ID


Rights Management

© 2010 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Abstract or Description

Location proteomics is concerned with the systematic analysis of the subcellular location of proteins. In order to perform comprehensive analysis of all protein location patterns, automated methods are needed. With the goal of extending automated subcellular location pattern analysis methods to high resolution images of tissues, 3D confocal microscope images of polarized CaCo2 cells immunostained for various proteins were collected. A three-color staining protocol was developed that permits parallel imaging of proteins of interest as well as DNA and the actin cytoskeleton. The collection is composed of 11 to 21 images for each of the 9 proteins that depict major subcellular patterns. A classifier was trained to recognize the subcellular location pattern of segmented cells with an accuracy of 89.2%. Using the Prior Updating method allowed improvement of this accuracy to 99.6%. This study demonstrates the benefit of using a graphical model approach for improving the pattern classification in tissue images.





Published In

Proceedings of the IEEE International Symposium on Biomedical Imaging, 2010, 1037-1040.