Date of Original Version

5-27-2009

Type

Article

PubMed ID

19474329

Rights Management

Copyright © 2009 Society for Neuroscience

Abstract or Description

The dendrites of a number of neuron types function as presynaptic structures, releasing transmitter after action potentials and dendritic spikes. In this regard, dendrites can function like axons, producing discrete outputs after suprathreshold electrical events. However, as the major site of synaptic inputs, dendrites experience ongoing subthreshold fluctuations in membrane potential, raising the question of whether these subthreshold changes can cause changes in transmitter release. Here, we show that mitral cells of the accessory olfactory bulb release glutamate from their dendrites in response to both subthreshold and suprathreshold stimuli. Whereas subthreshold output was typically low under control conditions, it could be enhanced several fold by pharmacological or endogenous activation of group I metabotropic glutamate receptors. These results indicate that presynaptic dendrites can support two distinct forms of output, and can dynamically regulate how electrical activity is coupled to transmitter release.

DOI

10.1523/JNEUROSCI.5606-08.2009

Included in

Biology Commons

Share

COinS
 

Published In

The Journal of neuroscience, 29, 21, 7023-7030.