Impact of migration and fitness on the stability of lethal t-haplotype polymorphism in Mus musculus: a computer study.

Date of Original Version




PubMed ID


Abstract or Description

The t-haplotype is a chromosomal region in Mus musculus characterized by meiotic drive such that heterozygous males transmit t-bearing chromosomes to roughly 90% of their offspring. Most naturally occurring t-haplotypes express a recessive embryonic lethality, preventing fixation of the t-haplotype. Surprisingly, the t-haplotype occurs in nature as a persistent, low-frequency polymorphism. Early modeling studies led LEWONTIN to hypothesize that this low level polymorphism results from a balance between genetic drift in small demes and interdemic migration. Here, we show that while combination of deme size and migration rate that predict natural t-haplotype frequencies exist, the range of such values is too narrow to be biologically plausible, suggesting that small deme size and interdemic migration alone do not explain the observed t-haplotype frequencies. In response, we tested other factors that might explain the observed t-polymorphism. Two led to biologically plausible models: substantially reduced heterozygous fitness and reduced meiotic drive. This raises the question whether these phenomena occur in nature. Our data suggest an alternative explanation: there is no stable, low-level t-polymorphism. Rather wild populations are in one of two stable states characterized by extinction of the t-haplotype and a high t-haplotype frequency, respectively, or in transition between the two.



Published In

Genetics, 145, 4, 1093-1108.