Title

Initiation, labile, and stabilization phases of experience-dependent plasticity at neocortical synapses.

Date of Original Version

5-8-2013

Type

Article

PubMed ID

23658185

Abstract or Description

Alteration of sensory input can change the strength of neocortical synapses. Selective activation of a subset of whiskers is sufficient to potentiate layer 4-layer 2/3 excitatory synapses in the mouse somatosensory (barrel) cortex, a process that is NMDAR dependent. By analyzing the time course of sensory-induced synaptic change, we have identified three distinct phases for synaptic strengthening in vivo. After an early, NMDAR-dependent phase where selective whisker activation is rapidly translated into increased synaptic strength, we identify a second phase where this potentiation is profoundly reduced by an input-specific, NMDAR-dependent depression. This labile phase is transient, lasting only a few hours, and may require ongoing sensory input for synaptic weakening. Residual synaptic strength is maintained in a third phase, the stabilization phase, which requires mGluR5 signaling. Identification of these three phases will facilitate a molecular dissection of the pathways that regulate synaptic lability and stabilization, and suggest potential approaches to modulate learning.

DOI

10.1523/JNEUROSCI.3575-12.2013

 

Published In

The Journal of neuroscience, 33, 19, 8483-8493.