Title

Identification of a gain-of-function mutation in a Golgi P-type ATPase that enhances Mn2+ efflux and protects against toxicity.

Date of Original Version

1-11-2011

Type

Article

PubMed ID

21187401

Abstract or Description

P-type ATPases transport a wide array of ions, regulate diverse cellular processes, and are implicated in a number of human diseases. However, mechanisms that increase ion transport by these ubiquitous proteins are not known. SPCA1 is a P-type pump that transports Mn(2+) from the cytosol into the Golgi. We developed an intra-Golgi Mn(2+) sensor and used it to screen for mutations introduced in SPCA1, on the basis of its predicted structure, which could increase its Mn(2+) pumping activity. Remarkably, a point mutation (Q747A) predicted to increase the size of its ion permeation cavity enhanced the sensor response and a compensatory mutation restoring the cavity to its original size abolished this effect. In vivo and in vitro Mn(2+) transport assays confirmed the hyperactivity of SPCA1-Q747A. Furthermore, increasing Golgi Mn(2+) transport by expression of SPCA1-Q747A increased cell viability upon Mn(2+) exposure, supporting the therapeutic potential of increased Mn(2+) uptake by the Golgi in the management of Mn(2+)-induced neurotoxicity.

DOI

10.1073/pnas.1013642108

 

Published In

Proceedings of the National Academy of Sciences of the United States of America, 108, 2, 858-863.