Normal and transplanted rat kidneys: diffusion MR imaging at 7 T.

Date of Original Version




PubMed ID


Abstract or Description

PURPOSE: To investigate the feasibility of obtaining reproducible apparent diffusion coefficient (ADC) maps of normal rat kidneys by using respiratory-triggered spin-echo diffusion-weighted magnetic resonance (MR) imaging, to investigate the sensitivity of ADC maps in the evaluation of renal blood flow, and to use this technique to monitor acute graft rejection in transplanted rat kidneys.

MATERIALS AND METHODS: Spin-echo diffusion-weighted MR imaging measurements were performed in 20 normal rats and nine rats that had undergone transplantation (six rats had received allografts; three had received isografts) at 7 T. To evaluate the effect of alteration in blood flow and water transport function, angiotensin II was infused in six normal rats and a series of spin-echo diffusion-weighted MR images was obtained at five time points. Transplanted kidneys were monitored by obtaining spin-echo diffusion-weighted MR images and gradient-echo MR images every 2 hours for 8 hours on postoperative day 4. Statistical analysis was performed with repeated-measures multivariate analysis of variance and the paired t test.

RESULTS: No significant differences in ADC values were observed between right and left kidneys in all three orthogonal directions; however, a small difference was observed between the cortex and medulla. ADC values in the cephalocaudal and mediolateral directions were higher than those in the anteroposterior direction (P35%, P

CONCLUSION: These findings suggest that reproducible renal ADC maps can be obtained in rats by using spin-echo diffusion-weighted MR imaging at 7 T. Spin-echo diffusion-weighted MR imaging may have potential as a noninvasive tool for monitoring early graft rejection after kidney transplantation.




Published In

Radiology, 231, 3, 702-709.